Tiny Middle Finger

Monday, June 1, 2015

3 Movimientos en el plano
3.1 Las translaciones
 Una traslación es una isometría en el espacio euclídeo caracterizada por un vector \vec{u}, tal que, a cada punto P de un objeto o figura se le hace corresponder otro punto P' , tal que:
\begin{cases} T_\vec{u}:\R^n \to \R^n & \overrightarrow{PP'} = \vec{u}\\ 
P\mapsto P'=T(P)=P+\vec{u} \end{cases}

¿Que es un vector?
 Se define un vector como un elemento de un espacio vectorial. Esta noción es más abstracta y para muchos espacios vectoriales no es posible representar sus vectores mediante el módulo, la longitud y la orientación. En particular los espacios de dimensión infinita sin producto escalar no son representables de ese modo. Los vectores en un espacio euclídeo se pueden representar geométricamente como segmentos de recta dirigidos («flechas») en el plano \R^2 o en el espacio \R^3.


Ejercicios de vectores y translaciones (Geogebra)

Suma de vectores

Componentes de vectores




Translaciones







No comments:

Post a Comment